Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information

Abstract
A modulation transfer function–based optimization method is described that generates optimal spectral and spatial uniformity of response from compact pushbroom imaging spectrometer designs. Such uniformity is essential for extracting accurate spectroscopic information from a pushbroom imaging spectrometer for Earth-observing remote sensing applications. Two simple and compact spectrometer design examples are described that satisfy stringent uniformity specifications.