Temporal profiles of cerebrospinal fluid leukotrienes, brain edema and inflammatory response following experimental brain injury

Abstract
The post-traumatic changes of leukotrienes LTC4, LTD4, LTE4, and LTB4 in cerebrospinal fluid of rats from 10 min to 7 days were investigated after controlled cortical impact in relation to brain edema and cellular inflammatory response. LTC4 increased five-fold at 4 h, normalized at 24 h, and showed another four-fold increase at 7 days. The same pattern was observed for LTD4 and LTE4. LTB4 however, behaved differently: concentrations were lower and levels peaked two-fold at 24 h. Edema in the injured hemisphere increased continuously up to 24 h without change contralaterally. Leukocyte infiltration, macrophage presence and microglia activation were most prominent at 24 h, 7 days and 24 h respectively. Leukotriene changes in CSF seem to reflect those in the affected tissue, with a time delay and in lower concentrations, and were not linearly correlated to brain edema. The initially high leukotriene levels are rather likely to contribute to the cytotoxic edema than to enhance a vasogenic edema component. The profile of LTB4 was parallel to the time course of leukocyte infiltration, indicating initiation of infiltration as well as prolonged production by leukocytes themselves. The second leukotriene peak at 7 days is likely to follow a different pathway and might be related to a production in macrophages or activated glia.