Epitaxially grown Si resonant interband tunnel diodes exhibiting high current densities

Abstract
This study presents the room-temperature operation of /spl delta/-doped Si resonant interband tunneling diodes which were fabricated by low-temperature molecular beam epitaxy. Post growth rapid thermal annealing of the samples was found to improve the current-voltage (I-V) characteristics. Optimal performance was observed for a 600/spl deg/C 1 min anneal, yielding a peak-to-valley current ratio (PVCR) as high as 1.38 with a peak current density (J/sub p/) as high as 1.42 kA/cm/sup 2/ for a device with a 4-nm intrinsic Si tunnel barrier. When the tunnel barrier was reduced to 2 nm, a PVCR of 1.41 with a J/sub p/ as high as 10.8 kA/cm/sup 2/ was observed. The devices withstood a series of burn-in measurements without noticeable degradation in either the J/sub p/ or PVCR. The structures presented are strain-free, and are compatible with a standard CMOS or HBT process.