Abstract
In many materials with a highly anisotropic band structure, electron-phonon interactions lead to a novel type of ground state called the charge-density wave. The condensate is pinned to the underlying lattice by impurities and by boundary effects, but can, even for small electric fields, carry current in a fashion originally envisioned by Fröhlich. This review discusses some of the underlying theories and the main experimental observations on this new collective transport phenomenon. The frequency- and electric-field-dependent conductivity, current oscillations, electric-field-dependent transport coefficients and elastic properties, together with nuclear-magnetic-resonance experiments, provide clear evidence for a translational motion of the condensate. Various theories, involving classical and quantum-mechanical concepts, are able to account for a broad variety of experimental findings, which were also made in the presence of combined dc and ac fields.