Study on Self-Tuning Tyre Friction Control for Developing Main-Servo Loop Integrated Chassis Control System

Top Cited Papers
Open Access
Abstract
The inherent flexibility of hierarchical structure scheme with main-servo loop control structure is proposed to the problem of integrated chassis control system for the vehicle. It includes both main loop, which calculates and allocates the aim force using the optimal robust control algorithm and servo loop control systems, which track and achieve the target force using the onboard independent brake actuators. In fact, for the brake actuator, the aim friction is obtained by tracking the corresponding slip ratio of target force. For the coefficient of tire-road friction varying with different road surface, to get the nonlinear time-varying target slip ratio, the most famous quasi-static magic formula is proposed to estimate and predict real-time coefficient of different road surface and the constrained hybrid genetic algorithm (GA) is used to identify the key parameters of the magic formula on-line. Then, a self-tuning longitudinal slip ratio controller (LSC) based on the nonsingular and fast terminal sliding mode (NFTSM) control method is designed to improve the tracking accuracy and response speed of the actuators. At last, the proposed integrated chassis control strategies and the self-tuning control strategies are verified by computer simulations.
Funding Information
  • Science and Technology Planning Project of Guangdong Province (2014B010118002)
  • National Natural Science Foundation of China (51375298, 51208500)
  • National Key Technology R&D Program (2014BAG01B04)