On the role of load motion compensation in high-performance force control

Abstract
Robots are frequently modeled as rigid body systems, having torques as input to their dynamics. A high-performance low-level torque source allows us to control the robot/environment interaction and to straightforwardly take advantage of many model-based control techniques. In this paper, we define a general 1-DOF framework, using basic physical principles, to show that there exists an intrinsic velocity feedback in the generalized force dynamics, independently of the actuation technology. We illustrate this phenomena using three different systems: a generic spring-mass system, a hydraulic actuator, and an electric motor. This analogy helps to clarify important common aspects regarding torque/force control that can be useful when designing and controlling a robot. We demonstrate, using simulations and experimental data, that it is possible to compensate for the load motion influence and to increase the torque tracking capabilities.

This publication has 17 references indexed in Scilit: