The Influence of Excessive IL-6 Production In Vivo on the Development and Function of Foxp3+ Regulatory T Cells

Abstract
IL-6 is a proinflammatory cytokine and its overproduction is implicated in a variety of inflammatory disorders. Recent in vitro analyses suggest that IL-6 is a key cytokine that determines the balance between Foxp3+ regulatory T cells (Tregs) and Th17 cells. However, it remains unclear whether excessive IL-6 production in vivo alters the development and function of Foxp3+ Tregs. In this study, we analyzed IL-6 transgenic (Tg) mice in which serum IL-6 levels are constitutively elevated. Interestingly, in IL-6 Tg mice, whereas peripheral lymphoid organs were enlarged, and T cells exhibited activated phenotype, Tregs were not reduced but rather increased compared with wild-type mice. In addition, Tregs from Tg mice normally suppressed proliferation of naive T cells in vitro. Furthermore, Tregs cotransferred with naive CD4 T cells into SCID–IL-6 Tg mice inhibited colitis as successfully as those transferred into control SCID mice. These results indicate that overproduction of IL-6 does not inhibit development or function of Foxp3+ Tregs in vivo. However, when naive CD4 T cells alone were transferred, Foxp3+ Tregs retrieved from SCID–IL-6 Tg mice were reduced compared with SCID mice. Moreover, the Helios subpopulation of Foxp3+ Tregs, recently defined as extrathymic Tregs, was significantly reduced in IL-6 Tg mice compared with wild-type mice. Collectively, these results suggest that IL-6 overproduced in vivo inhibits inducible Treg generation from naive T cells, but does not affect the development and function of natural Tregs.