Regulation of monocyte chemokine and MMP-9 secretion by proinflammatory cytokines in tuberculous osteomyelitis

Abstract
Tuberculous osteomyelitis causes bony destruction as a result of interactions among the pathogen, resident bone cells, and influxing leukocytes. Recruitment of monocytes and T cells is critical for antimycobacterial granuloma formation, but little is known about mechanisms regulating this in bone. We investigated the role of tumor necrosis factor α (TNF-α) and interleukin (IL)-1, key cytokines in granuloma formation, in networks involving human osteoblasts and monocytes. Experiments focused on CXC ligand (CXCL)8, CCL2, and matrix metalloproteinase (MMP)-9, human monocyte-derived mediators involved in control of leukocyte influx. TNF-α but not IL-1 has a key role stimulating CXCL8 secretion in Mycobacterium tuberculosis-infected human osteoblast MG-63 cells. Conditioned medium from M. tuberculosis-infected osteoblasts (COBTB) drives CXCL8 and some CCL2 gene expression and secretion from primary human monocytes. IL-1 receptor antagonist and to a lesser extent anti-TNF-α inhibited COBTB-induced CXCL8 secretion (P5 cells. Neither proinflammatory mediator affects MMP-9 secretion from COBTB-stimulated human monocytes. In summary, in a paracrine network, M. tuberculosis-infected osteoblasts drive high-level CXCL8, comparatively less CCL2, but do not alter MMP-9 secretion from uninfected human monocytes. This network is, in part, regulated by IL-1 and TNF-α.
Funding Information
  • the Medical Research Council
  • The Garfield Weston Foundation