Selective Inhibition by Grape Seed Proanthocyanidin Extracts of Cell Adhesion Molecule Expression Induced by Advanced Glycation End Products in Endothelial Cells

Abstract
The interaction of advanced glycation end products (AGE) with their cell surface receptors for AGEs (RAGE) has been causally implicated in the pathogenesis of diabetic vascular complications and has been shown to stimulate cell adhesion molecule expression in endothelial cells via induction of reactive oxygen species (ROS). Alternatively, grape seed proanthocyanidin extracts (GSPE), which are naturally occurring polyphenolic compounds, have been reported to possess potent radical scavenging and antioxidant properties and to display significant cardiovascular protective action. In this study, we investigated whether GSPE could inhibit AGE-induced cell adhesion molecule expression through interference with ROS generations in human umbilical vein endothelial cells. AGE-modified bovine serum albumin (AGE-BSA) was prepared by incubating BSA with a high concentration of glucose. Stimulation of cultured human umbilical vein endothelial cells with 200 microg/mL of AGE-BSA significantly enhanced intracellular ROS formation and subsequently upregulated the expression of vascular cell adhesion molecule-1 (VCAM) and intercellular adhesion molecule-1 (ICAM-1), whereas both unmodified BSA and GSPE alone were without effect. However, preincubation of different concentrations of GSPE markedly downregulated AGE-BSA-induced VCAM-1 expression at the surface protein and mRNA level in a concentration-dependent manner, but the increased ICAM-1 expression was not affected by GSPE treatment. Meanwhile, the inhibition by GSPE of intracellular ROS generation was also observed at defined time periods. These results demonstrate that GSPE can inhibit the enhanced VCAM-1 expression but not ICAM-1 in AGE-exposed endothelial cells by suppressing ROS generation. Hence, GSPE may have therapeutic potential in the prevention and treatment of vascular complications in patients with diabetes.

This publication has 31 references indexed in Scilit: