Regulation of Distinct Attractive and Aversive Mechanisms Mediating Benzaldehyde Chemotaxis inCaenorhabditis elegans

Abstract
Olfactory-mediated chemotaxis in nematodes provides a relatively simple system to study biological mechanisms of information processing. Analysis of the kinetics of chemotaxis in response to 100% benzaldehyde revealed an initial attractive response that is followed by a strong aversion to the odorant. We show that this behavior is mediated by two genetically separable attraction- and aversion-mediating response pathways. The attraction initially dominates behavior but with prolonged exposure habituation leads to a behavioral change, such that the odorant becomes repulsive. This olfactory habituation is susceptible to dishabituation, thereby re-establishing the attractive response to the odorant. Re-examination of the putative olfactory adaptation mutantadp-1(ky20)revealed that the phenotype observed in this line is due to a supersensitivity to a dishabituating stimulus, rather than a defect in the adaptation to odorants per se. A modified benzaldehyde chemotaxis assay was developed and used for the isolation of a mutant with a specific defect in habituation kinetics, expressed as a persistence of the attractive response.