Optical selection, manipulation, trapping, and activation of a microgear structure for applications in micro-optical–electromechanical systems

Abstract
The optical processes involved in laser trapping and optical manipulation are explored theoretically and experimentally as a means of activating a micrometer-size gear structure. We modeled the structure by using an enhanced ray-optics technique, and results indicate that the torque present on the gear can induce the gear to rotate about the gear-arm plane center with light as the driving energy source. We confirmed these findings experimentally by using gears manufactured with conventional semiconductor techniques and from a layer of polyimide. It is expected that such a simple gear design activated by use of light could lead to an entire new class of micro-optical–electromechanical systems.