Relaxation in filled polymers: A fractional calculus approach

Abstract
In recent years the fractional calculus approach to describing dynamic processes in disordered or complex systems such as relaxation or dielectric behavior in polymers or photo bleaching recovery in biologic membranes has proved to be an extraordinarily successful tool. In this paper we apply fractional relaxation to filled polymer networks and investigate the dependence of the decisive occurring parameters on the filler content. As a result, the dynamics of such complex systems may be well–described by our fractional model whereby the parameters agree with known phenomenological models.