Nuclear three-body force effect on a kaon condensate in neutron star matter

Abstract
We explore the effects of a microscopic nuclear three-body force on the threshold baryon density for kaon condensation in chemical equilibrium neutron star matter and on the composition of the kaon condensed phase in the framework of the Brueckner-Hartree-Fock approach. Our results show that the nuclear three-body force affects strongly the high-density behavior of nuclear symmetry energy and consequently reduces considerably the critical density for kaon condensation provided that the proton strangeness content is not very large. The dependence of the threshold density on the symmetry energy becomes weaker as the proton strangeness content increases. The kaon condensed phase of neutron star matter turns out to be proton rich instead of neutron rich. The three-body force has an important influence on the composition of the kaon condensed phase. Inclusion of the three-body force contribution in the nuclear symmetry energy results in a significant reduction of the proton and kaon fractions in the kaon condensed phase which is more proton-rich in the case of no three-body force. Our results are compared to other theoretical predictions by adopting different models for the nuclear symmetry energy. The possible implications of our results for the neutron star structure are also briefly discussed.