Abstract
The finite element (FE) method has been applied to simulate residual axial and hoop stresses generated in the weld region and heat-affected zone of an axisymmetric 50-bead circumferentially butt-welded P91 steel pipe, with an outer diameter of 145 mm and wall thickness of 50 mm. The FE simulation consists of a thermal analysis and a sequentially coupled structural analysis. Solid-state phase transformation (SSPT), which is characteristic of P91 steel during welding thermal cycles, has been modelled in the FE analysis by allowing for volumetric changes in steel and associated changes in yield stress due to austenitic and martensitic transformations. Phase transformation plasticity has also been taken into account. The effects of post-weld heat treatment (PWHT) have been investigated, including those of heat treatment holding time. Residual axial and hoop stresses have been depicted through the pipe wall thickness as well as along the outer surface of the pipe. The results indicate the importance of including SSPT in the simulation of residual stresses during the welding of P91 steel as well as the significance of PWHT on stress relaxation.

This publication has 17 references indexed in Scilit: