A NEW MODEL OF PODIAL DEPOSIT FEEDING IN THE SAND DOLLAR, MELLITA QUINQUJESPERFORATA (LESKE): THE SIEVE HYPOTHESIS CHALLENGED

Abstract
The feeding mechanism of Mellita quinquiesperforata (Leske) has been examined in detail. This sand dollar is a deposit feeder, ingesting particles mostly in the range of 100-250 µm. The particles are picked out of the substrate individually by specialized long barrel-tipped podia, which form a narrow palisade surrounding the geniculate spine fields on the oral surface. Selected food items are passed to short barrel-tipped podia, thence from podium to podium until they reach the food grooves where they are finally aggregated into mucus cords. The cords are passed to the mouth by the activity of food groove podia. At the peristome, the cord is passed between the circumoral spines by large food groove podia and steered into the mouth by five pairs of buccal podia. The lantern is powerfully muscled and has hardened teeth which crush diatoms and fracture many sand grains. For this reason, there is an apparent accumulation of fine particles (<50 µm) in the gut. Analysis of size frequencies of the material in the mucus cords and substrate indicates that no selection of fine particles occurs and, in fact, that they are virtually absent from the native sediment. An account of spine and podial morphology and distribution is included with descriptions and measurements of surface ciliary currents. It is shown that the formerly accepted sieve hypothesis of feeding cannot be entirely rejected on theoretical grounds. However, during feeding there was no evidence of the operation of any of the elements of the supposed sieve mechanism. Furthermore, the ciliary currents are not fast enough to account for the movement of most ingested material. Patterns of ciliary flow on the oral surface are not simply centripetal, but are much more complex than previously supposed.