Kin Discrimination Increases with Genetic Distance in a Social Amoeba

Abstract
In social amoebae such as Dictyostelium discoideum, cells aggregate to form a multicellular slug that migrates and then forms a fruiting body, which contains live spores (which go on to make new amoebae) and dead stalk cells. Unlike animals where all the cells descend from one fertilized egg, social amoeba fruiting bodies can contain cells with different genotypes. This potential for chimerism creates a conceptual problem in that “cheater” cells could arise that preferentially become reproductive spores and force the victims to become stalk cells and die. One way that amoebae could avoid being cheated is if they recognize and preferentially aggregate with genetically similar cells while avoiding genetically distant cells—a process called kin discrimination. We tested whether cells of D. discoideum could discriminate in this way. We mixed cells from genetically distinct strains and found that they segregate during multicellular development. The degree of segregation increases in a graded fashion with the genetic distance between strains. Our results demonstrate the existence of kin discrimination in D. discoideum, an ability that is likely to reduce the potential for cheating and ensure that the death of the stalk cells provides a fitness advantage to related individuals.

This publication has 47 references indexed in Scilit: