Reversible Intercalation of Charged Iodine Chains into Carbon Nanotube Ropes

Abstract
We report intercalation of charged polyiodide chains into the interstitial channels in a single-wall carbon nanotube (SWNT) rope lattice, suggesting a new carbon chemistry for nanotubes, distinctly different from that of graphite and C60. This structural model is supported by results from Raman spectroscopy, x-ray diffraction, Z-contrast electron microscopy, and electrical transport data. Iodine-doped SWNTs are found to be air stable, permitting the use of a variety of techniques to explore the effect of charge transfer on the physical properties of these novel quantum wires.