Reconstitution of enzymatic activity in hepatocytes of phenylalanine hydroxylase-deficient mice

Abstract
Phenylketonuria (PKU) is a metabolic disorder secondary to a deficiency of the hepatic enzyme phenylalanine hydroxylase (PAH). The recent creation of a mouse strain for PAH deficiency has provided an excellent model system to explore the possibility of its phenotypic correction by hepatic gene therapy. A recombinant retrovirus containing the mouse PAH cDNA under the transcriptional control of the human CMV promoter was constructed and used to transduce hepatocytes isolated from PAH-deficient mice. Viral-transduced hepatocytes produced dramatically higher levels of mouse PAH mRNA as compared to control mock-infected hepatocytes. The PAH mRNA was translated efficiently into PAH protein that is capable of converting phenylalanine to tyrosine in vitro. These results demonstrate that the PAH-deficient mouse hepatocytes can be readily reconstituted by retroviral-mediated gene transduction, which is a crucial step towards somatic gene therapy for PKU.

This publication has 19 references indexed in Scilit: