Tuning the Implosion Symmetry of ICF Targets via Controlled Crossed-Beam Energy Transfer

Abstract
Radiative hydrodynamics simulations of ignition experiments show that energy transfer between crossing laser beams allows tuning of the implosion symmetry. A new full-scale, three-dimensional quantitative model has been developed for crossed-beam energy transfer, allowing calculations of the propagation and coupling of multiple laser beams and their associated plasma waves in ignition hohlraums. This model has been implemented in a radiative-hydrodynamics code, demonstrating control of the implosion symmetry by a wavelength separation between cones of laser beams.