Benzo[a]Pyrene, 3-Methylcholanthrene and ß-Naphthoflavone Induce Oxidative Stress in Hepatoma Hepa 1c1c7 Cells by an AHR-dependent Pathway

Abstract
Polycyclic aromatic hydrocarbons have been shown to cause oxidative stress in vitro and in vivo in various animal models but the mechanisms by which these compounds produce oxidative stress are unknown. In the current study we have investigated the role of the aryl hydrocarbon receptor (AHR) in the production of reactive oxygen species (ROS) by its cognate ligands and the consequent effect on cyp1a1 activity, mRNA and protein expressions. For this purpose, Hepa 1c1c7 cells wild-type (WT) and C12 mutant cells, which are AHR-deficient, were incubated with increasing concentrations of the AHR-ligands, benzo[a]pyrene (B[a]P, 0.25-25 microM), 3-methylcholanthrene (3MC, 0.1-10 microM) and beta-naphthoflavone (betaNF, 1-50 microM). The studied AHR-ligands dose-dependently increased lipid peroxidation in WT but not in C12 cells. However, only B[a]P and betaNF, at the highest concentrations tested, significantly increased H2O2 production in WT but not C12 cells. The increase in lipid peroxidation and H2O2 production by AHR-ligands were accompanied by a decrease in the cyp1a1 catalytic activity but not mRNA or protein expressions, which were significantly induced in a dose-dependent manner by all AHR-ligands, suggesting a post-translational mechanism is involved in the decrease of cyp1a1 activity. The AHR-ligand-mediated decrease in cyp1a1 activity was reversed by the antioxidant N-acetylcysteine. Our results show that the AHR-ligands induce oxidative stress by an AHR-dependent pathway.