Atomic-Scale Imaging in Real and Energy Space Developed in Ultrafast Electron Microscopy

Abstract
In this contribution, we report the development of ultrafast electron microscopy (UEM) with atomic-scale real-, energy-, and Fourier-space resolutions. This second-generation UEM provides images, diffraction patterns, and electron energy spectra, and here we demonstrate its potential with applications for nanostructured materials and organometallic crystals. We clearly resolve the separation between atoms in the direct images and the Bragg spots/Debye−Scherrer rings in diffraction and obtain the electronic structure and elemental energies in the electron energy loss spectra (EELS) and energy filtered transmission electron microscopy (EFTEM).