Tandem Catalysis of Ammonia Borane Dehydrogenation and Phenylacetylene Hydrogenation Catalyzed by CeO2 Nanotube/Pd@MIL-53(Al)

Abstract
Heterogeneously catalyzed, selective hydrogenation in the liquid phase is widely used in industry for the synthesis of chemicals. However, it can be a challenge to prevent active nanoparticles (e.g., palladium) from aggregation/leaching and meanwhile achieve high conversion as well as selectivity, especially under mild conditions. To address these issues, a CeO2 nanotube/Pd@MIL-53(Al) sandwich-structured catalyst has been prepared in which the MIL-53(Al) porous shell can efficiently stabilize the palladium nanoparticles. When this catalyst was used in a tandem catalytic reaction involving the dehydrogenation of ammonia borane and the hydrogenation of phenylacetylene, remarkably, the hydrogen released from the dehydrogenation of ammonia borane boosted the catalytic process, with 100 % conversion of phenylacetylene and a selectivity of 96.2 % for styrene, even at room temperature and atmospheric pressure, within 1 min. This work therefore provides an alternative strategy for balancing the conversion and selectivity of liquid-phase hydrogenation reactions.
Funding Information
  • National Natural Science Foundation of China (21878121, 21808079)
  • Natural Science Foundation of Shandong Province (ZR2018MB004, ZR2017BB029)