Abstract
Floral traits affect mating success via their influence on the microenvironment in which sexual reproduction occurs as well as their impact on pollinator attraction. Here we investigate the importance of flower heliotropism as a source of parental environmental effects on pollen quality and performance. Flowers of the snow buttercup, Ranunculus adoneus, closely track the sun's rays. We experimentally restrained flowers to test for effects of heliotropism on pollen quality and performance after pollination. When equivalent amounts of pollen were transferred to recipient pistils, pollen from solar-tracking donor flowers exhibited a 32% advantage in germination compared to pollen from stationary (tethered) donor flowers. By the end of anthesis, pistils of tracking flowers contained 40% more germinating pollen grains and 44% more pollen tubes midway down the style than pistils of stationary ones. Solar tracking had no direct effect on pollen tube growth. The greater amount of germinating pollen in tracking flowers accounted for the treatment effect on pollen tube density. A survey of pollen receipt and pollen germination in naturally tracking flowers indicated that solar tracking primarily affects pollen tube density by promoting pollen germination rather than pollen deposition. We conclude that flower heliotropism, by enhancing the paternal environment for pollen development and the maternal environment for pollen germination, represents a source of positive parental environmental effects on pollen performance in snow buttercups.
Funding Information
  • National Science Foundation (BSR‐8604726)