Transition and Transversion Mutations Are Biased towards GC in Transposons of Chilo suppressalis (Lepidoptera: Pyralidae)

Abstract
Transposons are often regulated by their hosts, and as a result, there are transposons with several mutations within their host organisms. To gain insight into the patterns of the variations, nucleotide substitutions and indels of transposons were analysed in Chilo suppressalis Walker. The CsuPLE1.1 is a member of the piggyBac-like element (PLE) family, which belongs to the DNA transposons, and the Csu-Ty3 is a member of the Ty3/gypsy family, which belongs to the RNA transposons. Copies of CsuPLE1.1 and Csu-Ty3 were cloned separately from different C. suppressalis individuals, and then multiple sequence alignments were performed. There were numerous single-base substitutions in CsuPLE1.1 and Csu-Ty3, but only a few insertion and deletion mutations. Similarly, in both transposons, the occurring frequencies of transitions were significantly higher than transversions (p ≤ 0.01). In the single-base substitutions, the most frequently occurring base changes were A→G and T→C in both types of transposons. Additionally, single-base substitution frequencies occurring at positions 1, 2 or 3 (pos1, pos2 or pos3) of a given codon in the element transposase were not significantly different. Both in CsuPLE1.1 and Csu-Ty3, the patterns of nucleotide substitution had the same characteristics and nucleotide mutations were biased toward GC. This research provides a perspective on the understanding of transposon mutation patterns.
Funding Information
  • National Natural Science Foundation of China (31201505)