Estimating Internal Wave Energy Fluxes in the Ocean

Abstract
Energy flux is a fundamental quantity for understanding internal wave generation, propagation, and dissipation. In this paper, the estimation of internal wave energy fluxes ⟨u′p′⟩ from ocean observations that may be sparse in either time or depth are considered. Sampling must be sufficient in depth to allow for the estimation of the internal wave–induced pressure anomaly p′ using the hydrostatic balance, and sufficient in time to allow for phase averaging. Data limitations that are considered include profile time series with coarse temporal or vertical sampling, profiles missing near-surface or near-bottom information, moorings with sparse vertical sampling, and horizontal surveys with no coherent resampling in time. Methodologies, interpretation, and errors are described. For the specific case of the semidiurnal energy flux radiating from the Hawaiian ridge, errors of ∼10% are typical for estimates from six full-depth profiles spanning 15 h.