A surface-matching technique for robot-assisted registration

Abstract
Successful implementation of robot-assisted surgery (RAS) requires coherent integration of spatial image data with sensing and actuating devices, each having its own coordinate system. Hence, accurate estimation of the geometric relationships between relevant reference frames, known as registration, is a crucial procedure in all RAS applications. The purpose of this paper is to present a new registration scheme, along with the results of an experimental evaluation of a robot-assisted registration method for RAS applications in orthopedics. The accuracy of the proposed registration is appropriate for specified orthopedic surgical applications such as Total Knee Replacement. The registration method is based on a surface-matching algorithm that does not require marker implants, thereby reducing surgical invasiveness. Points on the bone surface are sampled by the robot, which in turn directs the surgical tool. This technique eliminates additional coordinate transformations to an external device (such as a digitizer), resulting in increased surgical accuracy. The registration technique was tested on an RSPR six-degrees-of-freedom parallel robot specifically designed for medical applications. A six-axis force sensor attached to the robot's moving platform enables fast and accurate acquisition of positions and surface normal directions at sampled points. Sampling with a robot probe was shown to be accurate, fast, and easy to perform. The whole procedure takes about 2 min, with the robot performing most of the registration procedures, leaving the surgeons hands free. Robotic registration was shown to provide a flawless link between preoperative planning and robotic assistance during surgery.