Efficient generation of shared RSA keys

Abstract
We describe efficient techniques for a number of parties to jointly generate an RSA key. At the end of the protocol an RSA modulus N = pq is publicly known. None of the parties know the factorization of N . In addition a public encryption exponent is publicly known and each party holds a share of the private exponent that enables threshold decryption. Our protocols are efficient in computation and communication. All results are presented in the honest but curious scenario (passive adversary).

This publication has 13 references indexed in Scilit: