Lipoic acid supplementation prevents cyclosporine-induced hypertension and nephrotoxicity in spontaneously hypertensive rats

Abstract
Cyclosporine (CsA) has significantly improved long-term survival after organ transplantations. Hypertension and nephrotoxicity are common side effects during CsA treatment and are aggravated by high salt intake.To examine whether lipoic acid (LA), a natural antioxidant that scavenges reactive oxygen species and regenerates/recycles endogenous antioxidants, could prevent CsA-induced hypertension and nephrotoxicity.Six-week-old spontaneously hypertensive rats (SHR) on a high-sodium diet (NaCl 6%) received CsA [5 mg/kg subcutaneously (s.c.)] alone or in combination with LA (0.5% w/w) for 6 weeks. Blood pressure, arterial functions, and tissue morphology were determined. Immunohistochemistry, quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) and high-pressure liquid chromatography were used for kidney and heart samples.CsA induced severe hypertension, cardiac hypertrophy, endothelial dysfunction, and pronounced albuminuria. Histologically, the kidneys showed severe thickening of the media of the afferent arteries with fibrinoid necrosis, perivascular monocyte/macrophage infiltration and nitrotyrosine overexpression. CsA induced the expression of fibrogenic connective tissue growth factor both in the heart and kidneys. The detrimental effects of CsA were associated with upregulation of myocardial atrial natriuretic peptide (ANP) mRNA expression, paradoxical activation of the renin-angiotensin system (RAS), induction of renal reduced nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase, and overexpression of oxidative stress-induced transcription factor NRF2. LA lowered blood pressure, ameliorated cardiac hypertrophy and endothelial dysfunction, and totally normalized albuminuria. In LA-treated rats, renal and cardiac morphologies were indistinguishable from those of SHR controls. CsA-induced myocardial ANP and connective tissue growth factor (CTGF) mRNA overexpression, RAS activation, NADPH oxidase induction, and NRF2 overexpression were prevented by LA. LA induced the mRNA expression of gamma-glutamylcysteine ligase, the rate-limiting enzyme in glutathione synthesis, and markedly increased hepatic cysteine and glutathione concentrations.Our findings suggest a salutary role for lipoic acid supplementation in the prevention of CsA-induced hypertension and nephrotoxicity, and underscore the importance of increased oxidative stress in the pathogenesis of CsA toxicity.