Antifungal Chemical Compounds Identified Using a C. elegans Pathogenicity Assay

Abstract
Candida spp. are among the most significant causes of nosocomial infections, and disseminated candidiasis continues to have an attributable mortality rate of over 25%. For this reason, we have developed a liquid media assay using the model nematode Caenorhabditis elegans as a model organism for Candida infection. The worms are infected on solid media lawns and then moved to pathogen-free liquid media. Unless antifungal compounds are added to the wells, the majority of worms die within 3–4 d. This model is similar to the infection process in humans, in that Candida cells are able to produce filaments, which are essential for the infection process in humans. We used this pathogen model to create a semi-automated, high-throughput screen using C. elegans to evaluate the antifungal effectiveness of many types of chemical compounds. Through this process, we have identified three compounds that we show have varying degrees of antifungal activity in C. elegans, in vitro, and in mice.