Hole Expansion of Aluminum Alloys for the Automotive Industry

Abstract
The introduction of Aluminum alloys in the automotive industry due to their high strength‐to‐weight ratio has brought with it a number of technical hurdles which require overcoming in order that their full potential may be realized. One of the issues that require addressing is that of edge cracking, a phenomenon which is particularly difficult to predict. This is often observed during the initial drawing operation in a traditional automotive stamping plant. A useful measure of a materials susceptibility to edge cracking is the Hole Expansion Ratio. Currently there is a standard (ISO 16630) which provides for holes to be expanded by a conical punch, where the original hole is introduced via punching. This reflects the traditional processing route within the automotive industry. Investigations have been conducted using both conical and flat‐topped punches, as well as using drilling and reaming, and CNC machining to introduce the initial hole for comparison with the standard punched route in order to understand the effect of different processes on the susceptibility to edge cracking. The hole expansion ratio for a number of aluminum alloys, both 5xxx and 6xxx series, has been determined. Regression analyses of hole expansion ratios against material thickness and UTS have been conducted, and a relationship has been established for the different punch and hole types. Consideration is also given to combining a materials hole expansion ratio with its Forming Limit Curve (FLC), with a focus on tool design and tool buy‐off being presented.