IL-1 Mediates Pulmonary and Systemic Inflammatory Responses to Chorioamnionitis Induced by Lipopolysaccharide

Abstract
Rationale: Chorioamnionitis frequently associates with preterm delivery and increased amniotic fluid IL-1, and causes fetal lung and systemic inflammation. However, chorioamnionitis is also associated with a paradoxical reduction in the incidence of surfactant deficiency–related respiratory distress syndrome in preterm infants. Objectives: To identify the role of IL-1 signaling in the mediation of pulmonary and systemic inflammation and lung maturation in a fetal sheep model of lipopolysaccharide (LPS) induced chorioamnionitis. Methods: After confirming the efficacy of recombinant human IL-1 receptor antagonist (rhIL-1ra), fetal sheep were exposed to intraamniotic (IA) injections of Escherichia coli LPS with or without prior IA injections of rhIL-1ra. Preterm lambs were delivered at 82% of term gestation. Measurements and Main Results: rhIL-1ra decreased IA LPS–induced lung inflammation assessed by decreased lung neutrophil and monocyte influx, inducible nitric oxide synthase expression, lung IL-6 and IL-1β mRNA expression, and airway myeloperoxidase concentrations. rhIL-1ra inhibited IA LPS–induced fetal systemic inflammation assessed by decreased plasma IL-8, protein carbonyls, blood neutrophilia, and the expression of serum amyloid A3 mRNA in the liver. rhIL-1ra also partially blocked the lung maturational effects of IA LPS. Therefore blockade of IL-1 signaling in the amniotic compartment inhibited fetal lung and systemic inflammation and lung maturation in response to LPS-induced chorioamnionitis. Conclusions: IL-1 plays a central role in the pathogenesis of chorioamnionitis-induced fetal inflammatory responses.

This publication has 49 references indexed in Scilit: