Abstract
We lack non-invasive tools for evaluating the coronary and renal microcirculations. Since cutaneous Doppler laser exploration has evidenced impaired cutaneous microvascular responses in coronary artery disease and in impaired renal function, we wanted to find out if there was a link between the impairments in the cutaneous and renal microcirculations. To specify the significance of the rise in the renal resistive index (RI), which is still unclear, we also sought relations between RI and arterial stiffness. We conducted a cross-sectional controlled study in a heterogeneous population including hypertensive patients of various ages with or without a history of cardiovascular disease along with a healthy control group. The cutaneous microcirculation was evaluated by laser Doppler flowmetry of the post-occlusive reactive hyperhemy (PORH) and of the hyperhemy to heat. The renal microcirculation was evaluated by measurement of the RI. Arterial stiffness was evaluated from an ambulatory measurement of the corrected QKD100–60 interval. We included 22 hypertensives and 11 controls of mean age 60.6 vs 40.8 years. In this population, there was a correlation between RI and basal zero to peak flow variation (BZ-PF) (r=−0.42; P=0.02) and a correlation between RI and rest flow to peak flow variation (RF-PF) (r=−0.44; P=0.01). There was also a significant correlation between RI and the corrected QKD100–60 (r=−0.47; P=0.01). The significant correlation between PORH parameters and RI indicates that the functional modifications of the renal and cutaneous microcirculations tend to evolve in parallel during ageing or hypertension. The relation between RI and arterial stiffness shows that RI is a compound index of both renal microvascular impairment and the deterioration of macrovascular mechanics.