Soil rotifer communities are extremely diverse globally but spatially autocorrelated locally

Abstract
Bdelloid rotifers are important contributors to biogeochemical cycling and trophic dynamics of both aquatic and terrestrial ecosystems, but little is known about their biogeographic distribution and community structure in terrestrial environments. This lack of knowledge stems from a lack of phylogenetic information and assumptions that microbial eukaryotes are globally distributed and have very limited diversity across vast geographic distances. However, these assumptions have been based more on assessments of their morphology than any measure of their true genetic diversity and biogeographic distribution. We developed specific primers for the cytochrome c oxidase subunit 1 (cox1) gene of bdelloid rotifers and amplified and cloned sequences using a nested sampling scheme that represented local (0-10 m) to global (up to 10,000 km) scales. Using phylogenetic community analyses (UniFrac) and geospatial statistics (semivariograms, mantel tests), we were able to reject the hypothesis that communities of rotifers are the same across even fairly small geographic distances. Bdelloid communities showed highly significant spatial structuring with spatial autocorrelation ranges of 54-133 m, but beyond that distance communities were extremely dissimilar. Furthermore, we show that these spatial patterns are driven not only by changes in relative abundance of phylotypes but also by absolute changes in phylotype occurrence (richness). There is almost no overlap in phylotype [or operational taxonomic unit (OTU)] occurrence between communities at distances beyond the autocorrelation range (~133 m). Such small species ranges, combined with their ubiquity in soils, make it increasingly clear that the biodiversity of bdelloid rotifers (and other less easily dispersed microbes) is much higher than previously thought.

This publication has 53 references indexed in Scilit: