Methods for Identifying a Default Cross-Species Scaling Factor

Abstract
The need to identify “toxicologically equivalent” doses across different species is a major issue in toxicology and risk assessment. In this article, we describe an approach for establishing default cross-species extrapolation factors used to scale oral doses across species for non-carcinogenic endpoints. This work represents part of an on-going effort to harmonize the way animal data are evaluated for carcinogenic and non-carcinogenic endpoints. In addition to considering default scaling factors, we also discuss how chemical-specific data (e.g., metabolic or mechanistic data) can be incorporated into the dose extrapolation process. After first examining the required properties of a default scaling methodology, we consider scaling approaches based on empirical relationships observed for particular classes of compounds and also more theoretical approaches based on general physiological principles (i.e, allometry). The available data suggest that the empirical and allometric approaches each provide support for the idea that toxicological risks are approximately equal when daily oral doses are proportional to body weight raised to the 3/4-power. We also discuss specific challenges for dose scaling related to different routes of exposure, acute versus chronic toxicity, and extrapolations related to particular life stages (e.g., childhood).