Abstract
In cattle and other species in which the pool of resting, primordial follicles is formed during fetal life, little is known about the regulation of the early stages of ovarian follicular development. We used histological morphometry and a combination of observations in vivo and experiments in vitro to study the timing and regulation of follicle formation and the acquisition of the capacity of primordial follicles to initiate growth in cattle. In vivo, primordial, primary, and secondary follicles were first observed around Days 90, 140, and 210 of gestation, respectively. The long interval between the first appearance of primordial and primary follicles suggests that primordial follicles are not capable of activating when they are first formed, or they are inhibited from activating. This hypothesis was confirmed by the finding that most primordial follicles in pieces of ovarian cortex obtained from fetal ovaries older than 140 days activated (i.e., initiated growth) after 2 days in vitro, whereas follicles in cortical pieces from 90- to 140-day-old fetal ovaries did not. We tested the hypothesis that the oocytes of newly formed primordial follicles are not in meiotic arrest and found that before Day 141, most oocytes (∼73%) were in prediplotene stages of prophase I, whereas after Day 140, the majority of oocytes (∼85%) had arrested at the diplotene stage. This observation was further confirmed by the finding that levels of mRNA for YBX2, a protein associated with meiotic arrest, were 2.3 times higher in ovarian cortical pieces isolated after versus before Day 141. Primordial follicles in cortical pieces from 90- to 140-day-old fetal ovaries did activate during a longer, 10-day culture, but activation could be inhibited by adding estradiol or progesterone, but not dihydrotestosterone (all at 10−6 M). Fetal ovaries secreted estradiol in vitro, and secretion by ovaries from 83 to 140-day-old fetuses declined precipitously (∼30-fold) with age, consistent with the hypothesis that estradiol inhibits activation of newly formed primordial follicles in vivo. In summary, the results show that newly formed primordial follicles do not activate in vivo or within 2 days in vitro and that capacity to activate is correlated with achievement of meiotic arrest by the oocyte and can be inhibited by estradiol, which fetal ovaries actively produce around the time of follicle formation.