Compressional velocity and porosity in sand‐clay mixtures

Abstract
Laboratory measurements of porosity and compressional velocity were conducted on unconsolidated brine saturated clean Ottawa sand, pure kaolinite, and their mixtures at various confining pressures. A peak in P velocity versus clay content in unconsolidated sand‐clay mixtures at 40 percent clay by weight was found. The peak in velocity is 20–30 percent higher than for either pure clay or clean sand. A minimum in porosity versus clay content at 20–40 percent clay by weight is also observed. Such behavior is explained using a micro‐geometrical model for mixtures of sand and clay in which two classes of sediments are considered: (1) sands and shaley sands, in which clay is dispersed in the pore space of load bearing sand and thus reduces porosity and increases the elastic moduli of the pore‐filling material and (2) shales and sandy shales, in which sand grains are dispersed in a clay matrix. For these sediments, the model reproduces the extrema in velocity and porosity and accounts for much of the scatter in the velocity‐porosity relationship.