Non-Newtonian and Thermal Effects on Film Generation and Traction Reduction in EHL Line Contact Conjunctions

Abstract
The thermal circular non-Newtonian model accompanied with three specialized models was used to study the mechanisms of film generation and traction reduction in EHL line contact conjunctions. Results revealed that the film generation capability is mainly controlled by the inlet zone pressure buildup and the inlet zone piezo-thickening. The diffusion time effect enhances the thermal thinning that reduces this capability. On the other hand, the piezoviscosity and the shear rate in the central contact zone are the main traction generation factors whereas shear skidding and thermal skidding are the traction reduction mechanisms. Results also showed that neglecting either viscous heating or the combination of shear thinning and shear stress reduction in formulating an EHL simulator is inaccurate for many cases.