Localized Dynamic Light Scattering: Probing Single Particle Dynamics at the Nanoscale

Abstract
We developed an experimental technique which probes the dynamics of a single colloidal particle over many decades in time, with spatial resolution of a few nanometers. By scattering a focused laser beam from a particle observed in an optical microscope, we measure its fluctuations via the temporal autocorrelation function of the scattered intensity g(t). This technique is demonstrated by applying it to a single Brownian particle in an optical trap of force constant k. The decay times of g(t), which are related to the particle position autocorrelation function, scale as k1, as expected from theory.