Differential Evolution as Applied to Electromagnetics

Abstract
In electromagnetics, optimization problems generally require high computational resources and involve a large number of unknowns. They are usually characterized by non-convex functionals and continuous spaces suitable for strategies based on Differential Evolution (DE). In such a framework, this paper is aimed at presenting an overview of Differential Evolution-based approaches used in electromagnetics, pointing out novelties and customizations with respect to other fields of application. Starting from a general description of the evolutionary mechanism of Differential Evolution, Differential Evolution-based techniques for electromagnetic optimization are presented. Some hints on the convergence properties and the sensitivity to control parameters are also given. Finally, a comprehensive coverage of different Differential Evolution formulations in solving optimization problems in the area of computational electromagnetics is presented, focusing on antenna synthesis and inverse scattering.

This publication has 66 references indexed in Scilit: