Scintigraphic assessment of regional cardiac adrenergic innervation.

Abstract
To assess the feasibility of nonivasively imaging the regional distribution of myocardial sympathetic innervation, we evaluated the distribution of sympathetic nerve endings, using 123I metaiodobenzylguanidine (MIBG), and compared this with distribution of myocardial perfusion, using 201Tl. Twenty dogs were studied: 11 after regional denervation, and nine as controls. Regional denervation was done by left stellate ganglion removal, right stellate ganglion removal, and application of phenol to the epicardial surface. Computer-processed functional maps displayed the relative distribution of MIBG and thallium in multiple projections in vivo and excised heart slices in all animals. In six animals, dual isotope emission computed tomograms were acquired in vivo. Tissue samples taken from innervated and denervated regions of the MIBG images were analyzed for norepinephrine content to validate image findings. Normal controls showed homogeneous and parallel distributions of MIBG and thallium in the major left ventricular mass. In the left stellectomized hearts, MIBG was reduced relative to thallium in the posterior left ventricle; whereas in right stellectomized hearts, reduced MIBG was in the anterior left ventricle. Phenol-painted hearts showed a broad area of decreased MIBG extending beyond the area of phenol application. In both stellectomized and phenol-painted hearts, thallium distribution remained homogeneous and normal. Norepinephrine content was greater in regions showing normal MIBG (550 .+-. 223 ng/g) compared with regions showing reduced MIBG (39 .+-. 44 ng/g) (p < 0.001), confirming regional denervation. Combined MIBG-thallium functional maps display the regional distribution of sympathetic innervation. This new ability to noninvasively map the distribution of sympathetic nerves with simultaneous comparison to regional perfusion may provide important new insights into mechanisms, whereby an imbalance in sympathetic activity may relate to clinical disorders.