Abstract
Studies were made of the behaviour of Glossina pallidipes Austen and G. morsitans morsitans Westwood during the hot season (September–November) in Zimbabwe, and attributes of samples of tsetse from refuges, odour-baited traps, targets and mobile baits were compared. Various arrangements of electric nets were used to study tsetse as they entered or left artificial refuges. The peak time of entry into a refuge varied between 0800 h and 1400 h and coincided with the time when the air temperature reached 32°C; the response was stronger if 32°C occurred earlier in the day. The peak time of exit varied between 1500 h and 1700 h, being significantly later on hotter days, but did not show a clear temperature threshold. Micro-meteorological measurements showed that refuges were significantly cooler than the surrounding riverine woodland during the day but warmer at night. There was no significant difference between the air temperatures in leafless mopane woodland and semi-evergreen riverine woodland during the day but at night the riverine woodland was significantly cooler. Combining the micro-meteorological data with the estimated local movements of tsetse suggested that during the hot season, tsetse experienced temperatures 2°C cooler than the daily mean in a Stevenson screen located in mopane woodland. Compared with the catches of tsetse from traps, refuges had higher proportions of G. m. morsitans, males, young flies and females in the later stages of reproduction, and it is suggested that during the hot season, samples from refuges were less biased than traps with respect to species and sex composition, age and reproductive status. During the hot season, tsetse populations declined by c. 90% and although air temperatures exceeded lethal levels (c. 40°C), the refuge-entering responses meant that adult flies probably experienced a maximum of only c. 35°C. It is suggested that the decline in numbers is not due to direct mortality effects of temperature on adults but may be due, in part, to a doubling in the rates of reproductive abnormality during the hot season and an increase in adult mortality related to a temperature-dependent decrease in pupal period.