Peristaltic pumping in circular cylindrical tubes: a numerical study of fluid transport and its efficiency

Abstract
A numerical method employing an upwind finite-difference technique is adopted for an investigation of peristaltic pumping in circular cylindrical tubes. such as some organs in the living body. Various peristaltic flows are calculated under conditions of finite wave amplitudes, finite wavelengths and finite Reynolds numbers, and the influence of the magnitude of these quantities on the flow is investigated. The fluid mechanics of peristaltic mixing and transport are studied in detail by analysing the reflux and the trapping phenomena. The mechanical efficiency of peristaltic pumping is also discussed, with reference to engineering and physiological applications. It is shown that quantitative differences are observed between the results obtained for flows in a circular cylindrical tube and a two-dimensional plane channel. However, for both cases the appearance of peristaltic reflux depends upon the Reynolds number and the wavenumber (mean tube radius/wavelength). Much greater peristaltic mixing and transport are realized in a circular tube than in a plane channel.

This publication has 23 references indexed in Scilit: