Clinical Pharmacokinetics and Efficacy of Renin Inhibitors

Abstract
The successful introduction of angiotensin converting enzyme (ACE) inhibitors in the treatment of patients with essential hypertension or heart failure has increased interest in the (patho)physiological role of the renin-angiotensin system (RAS). ACE is not only involved in the formation of angiotensin II from angiotensin I, but also inactivates vasoactive substances such as bradykinin and substance P. Accumulation of these substances during treatment with ACE inhibitors may contribute to both their therapeutic action and certain adverse effects associated with their use, such as cough and angioneurotic oedema. Renin inhibitors offer an alternative approach to inhibit the RAS. The major advantage of these, still experimental, drugs is their high specificity for the RAS since angiotensinogen is the only known substrate of renin. The currently available renin inhibitors are pseudopeptides that are rapidly taken up by the liver and excreted in the bile. Consequently, these drugs are subjected to a considerable first pass effect which limits their oral bioavailability. Additionally, plasma elimination half-life times are short and the duration of action is limited. Despite these shortcomings, single oral or intravenous administration results in a 80 to 90% inhibition of plasma renin activity and a slight reduction in blood pressure in patients with hypertension. The extent of blood pressure reduction is dependent on the patient's salt balance. After 1 week of oral treatment with the renin inhibitor remikiren, the antihypertensive effect was reduced in salt-repleted hypertensive patients. Subsequent intravenous administration of the drug did not further affect blood pressure, indicating that it was not the first pass effect that was limiting the efficacy of remikiren.(ABSTRACT TRUNCATED AT 250 WORDS)