The Role of Nonbonded Sulfur−Oxygen Interaction in the Dissociative Electron Transfer to Nitro-Substituted Arenesulfenyl Chlorides

Abstract
The electrochemical reduction of p-nitrophenyl sulfenyl chloride, o-nitrophenyl sulfenyl chloride as well as bis(4-nitrophenyl) disulfide and bis(2-dinitrophenyl) disulfide was investigated in acetonitrile at an inert electrode. Reduction standard potentials as well standard heterogeneous electron-transfer rate constants have been determined using convolution analysis. An unexpected big difference in the thermodynamics and kinetics of the initial electron-transfer process as well as a striking change in the reductive cleavage mechanism of the S−Cl bond as a function of the nitro group position on the aryl ring of the aryl sulfenyl chloride is observed. A computational study at the B3LYP level shows that this difference in behavior is due to the through-space nonbonded S···O interaction in the o-nitrophenyl sulfenyl chloride.

This publication has 25 references indexed in Scilit: