The Transport Properties of Carbon Dioxide

Abstract
The paper contains new, representative equations for the viscosity and thermal conductivity of carbon dioxide. The equations are based in part upon a body of experimental data that have been critically assessed for internal consistency and for agreement with theory whenever possible. In the case of the low‐density thermal conductivity at high temperatures, all available data are shown to be inconsistent with theoretical expectation and have therefore been abandoned in favor of a theoretical prediction. Similarly, the liquid‐phase thermal conductivity has been predicted owing to the small extent and poor quality of the experimental information. In the same phase the inconsistencies between the various literature reports of viscosity measurements cannot be resolved and new measurements are necessary. In the critical region the experimentally observed enhancements of both transport properties are well represented by theoretically based equations containing just one adjustable parameter. The complete correlations cover the temperature range 200 K≤T<1500 K for viscosity and 200 K≤T≤1000 K for thermal conductivity, and pressures up to 100 MPa. The uncertainties associated with the correlation vary according to the thermodynamic state from ±0.3% for the viscosity of the dilute gas near room temperature to ±5% for the thermal conductivity in the liquid phase. Tables of the viscosity and thermal conductivity generated by the representative equations are provided to assist with the confirmation of computer implementations of the calculation procedure.