Imaging Properties of a Positron Tomograph with 280 Bgo Crystals

Abstract
The basic imaging properties of the Donner 280-BGO-Crystal positron tomograph were measured and compared with the same system when it was equipped with 280 NaI(T1) crystals. The NaI(T1) crystals were 8 mm × 30 mm × 50 mm deep, sealed in 10 mm wide stainless steel cans. The BGO crystals are 9.5 mm wide × 32 mm × 32 mm deep and as they are not hygroscopic do not require sealed cans. With a shielding gap of 3 cm (section thickness 1.7 cm FWHM) the sensitivity of the BGO system is 55,000 events per sec for 1 μCi per cm3 in a 20 cm cylinder of water, which is 2.3 times higher than the NaI(T1) system. For a 200 μCi/cm line source on the ring axis in a 20 cm diameter water cylinder, the BGO system records 86% of the scatter fraction and 66% of the accidental fraction of the NaI(T1) system. The lower light yield and poorer time resolution of BGO requires a wider coincidence timing window than NaI(T1); however, the ability to use full-energy pulse height selection with a 2.3-fold improvement in sensitivity results in an overall reduction in the fraction of accidental events recorded. The in-plane resolution of the BGO system is 9-10 mm FWHM within the central 30 cm diameter field, and the radial elongation at the edge of the field in the NaI(T1) system has been nearly eliminated.

This publication has 16 references indexed in Scilit: