Femtosecond-tunable measurement of electron thermalization in gold

Abstract
Femtosecond electron thermalization in metals was investigated using transient thermomodulation transmissivity and reflectivity. Studies were performed using a tunable multiple-wavelength femtosecond pump-probe technique in optically thin gold films in the low perturbation limit. An IR pump beam is used to heat the electron distribution and changes in electron temperature are measured with a visible probe beam at the d band to Fermi-surface transition. We show that the subpicosecond optical response of gold is dominated by delayed thermalization of the electron gas. This effect is particularly important far off the spectral peak of the reflectivity or transmissivity changes, permitting a direct and sensitive access to the internal thermalization of the electron gas. Using a simple rate-equation model, line-shape analysis of the transient reflectivity and transmissivity indicates a thermalization time of the order of 500 fs. At energies close to the Fermi surface, longer thermalization times ∼1–2 ps are observed. These results are in agreement with a more sophisticated model based on calculations of the electron-thermalization dynamics by numerical solutions of the Boltzmann equation. This model quantitatively describes the measured transient optical response during the full thermalization time of electron gas, of the order of 1.5 ps, and gives new insight into electron thermalization in metals. DOI: http://dx.doi.org/10.1103/PhysRevB.50.15337 © 1994 The American Physical Society