Regulation of Glycogen Metabolism in Primary and Transformed Astrocytes In Vitro

Abstract
Glycogen metabolism was studied in primary and Herpesvirus-transformed cultures of neonatal rat brain astrocytes. A small fraction of the glucose consumed was conserved in glycogen in both the primary and the transformed astrocytic cell cultures. After addition of culture medium containing 5.5 mM glucose, glycogen increased to maximal levels within 2.5 h, the approximate time at which half of the medium glucose was consumed, and rapidly declined thereafter in both the primary and transformed astrocytic cultures. Maximum levels of glycogen were apparently related to the cell density of the Herpesvirus-transformed cultures, but primary cultures did not show this behavior. At any given cell density, maximal levels of glycogen were dependent on the concentration of extracellular glucose. Administration of glucose caused a transient activation of glycogen synthase a and a rapid inactivation of glycogen phosphorylase a.