EST-derived microsatellites from Actinidia species and their potential for mapping

Abstract
To increase the speed and reduce the cost of constructing a genetic map of Actinidia species (kiwifruit), for use in both breeding and functional genomics programmes, we sampled microsatellites from expressed sequence tags (ESTs) to evaluate their frequency of occurrence and level of polymorphism. Perfect dinucleotide repeats were the microsatellites selected, and these were found to be numerous in both the 5′ and 3′ ends of the genes represented. The microsatellites were of various lengths, the majority being repeats with the pattern (CT)_ n /(GA)_ n . One hundred and fifty microsatellites, each with more than 10 dinucleotide repeat units, were chosen as possible markers, and when these were amplified, 93.5% were found to be polymorphic and segregating in a mapping population, with 22.6% amplifying more than one locus. Four marker categories were identified. Fully informative markers made up 27% of the total, 36.2% were female informative, 25.8% were male informative and 10% partly informative. The mapping population was an intraspecific cross in the diploid species Actinidia chinensis , with parents chosen for their diversity in fruit and plant characteristics, and for their geographical separation. Linkage was tested using the software ‘Joinmap’ and a LOD value of 3. The distribution of the EST-based markers over the linkage groups obtained appeared to be random, taking into consideration the small sample size, that the number of linkage groups (31) exceeded the chromosome number of n =29, and that a number of markers were not assigned to any group. Some microsatellite markers which amplified more than one locus mapped to separate linkage groups. According to our study in A. chinensis , EST-derived microsatellites give large numbers of possible markers very quickly and at reasonable cost. The markers are highly polymorphic, segregate in the mapping population, and increase the value of the genomic map by providing some functional information.