Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots

Abstract
The quantum confined Stark effect is observed for quantum dots (QD’s) exposed to randomly fluctuating electric fields in epitaxial structures. These fields, attributed to charges localized at defects in the vicinity of the QD’s, lead to a jitter in the emission energies of individual QD’s. This jitter has typical frequencies of below about 1 Hz and is characteristic for each QD thus providing a unique means to unambiguously identify the emission spectra of single QD’s. Up to eight lines are identified for individual QD’s and attributed to excitonic, biexcitonic, and LO-phonon-assisted transitions. The intensity of the LO-phonon replica is surprisingly large corresponding to Huang-Rhys factors of about one.